当前位置首页电影《婷婷丁香俺也去狠狠爱》

《婷婷丁香俺也去狠狠爱》

类型:恐怖 微电影 喜剧 美国 2009 

主演:赵杰 (台湾演员)余俪徐少强吴春怡 

导演:让·德塞贡扎克 

剧情简介

在Altera SoC DE1板卡上跑完整的卷积神经网(🚧)络

这次为大家详细展示(🧥)一个利用卷积神(🥒)经网络实现图片自动分类的例程。

神经网络的优点:自动从数据中(🔺)学习经验知识,无需复杂的模型(🐘)和算法。

缺点:有监督学习,需要大量的带标签数据;参数量(💔)太少(🌪)时容易过拟合,泛化能力差,参数量太大时训练收敛很慢(有可能需要几个月到几年)。

为了克服上述缺点,人(😿)们发掘了各种计算资源,包括多核CPU、GPU、DSP、ASIC、(🕙)FPGA,甚至使用模拟电路。

使用CPU实现卷积神经网络比较方便调试,但性能太差,一般人们都选用更快的GPU实现。目前开(💅)源的框架(👫)大多都支持GPU,如伯克利大学Caffe和Google Convnet。

微软在2015年2月宣布使用Stratix V完成了CNN加速器,处理 CIFAR10 图片速度可达每秒2300多张。

这里我们也使用CIFAR10图片数据,在Cyclone V板子上跑一个卷积神经网络CNN demo。由于板子上计算资(🛎)源太少(DSP Slice只有80多个),实现完整的网络不太现实,只能在FPGA上实现基本计算单元,然后由HPS统一调度。性能预期不会太高,后面给出。

CIFAR10图片都是什么呢?(🌌)先来张图!

有兴趣的(🔔)朋友可以到官网下载(CIFAR10官网)。上面(🎃)提到(🏒)过,CNN是有监督学(🗃)习系(🤪)统,需要大量带label的数据,CIFAR10就是这样一个开放的数据库,提供了60000张不同类别的图片,分为10个类(如上图左侧所示(🎀)),每个类别有600张图(🏀)。这个数据集不算特别(🔇)大,适合在嵌入式平台上(🌚)实现。而更大的数据集(🤟)有ImageNet-1000(ImageNet官网),拥有120多万张高清无码大图,我下(🛳)载到硬盘,占用了近200GB空间(只能忍痛将(🏢)其他rmvb和avi删掉了)!

有朋友会问(⛹),不用这些数据行不行,我们(😬)的智能手机里面照片能不(🔥)能用于CNN做训练?

答案是可以的,只是你的数据集很不“均匀”,采样不够“完备”,训练出的模型是真实模型的“有偏估计”,而上述两个数据集经过了种种考验,已经是学术界公认的优质(😾)数据集(👀),一年一度的ILSVRC比赛就采用(😑)了这些数(📭)据集。

说完数据,再说模型。先来看一张经典的CNN结构:

这是世界上第一个将CNN实用化的例子,实现了手写体字母自动识(⛪)别。在这个CNN模型(🐤)中,可以看到输入是一张32 x 32的二维图像(⚽),经过卷积层(Convolution)、下(🥊)采样层(Subsampling,也称Pooling)、全连接层(Full Connection,也称Inner Product)后,得到(👕)一组概率密度,我们选其中概率最大的元素作为该模型对输入图像的分类结果。所以实现CNN时,只(🔮)需(⛔)要实现三种基本算法:卷积、下采样、(💑)矩阵乘。除此之外,每层输出都可选择是否经过非线性变换,常用的非线性变换有ReLU和Sigmoid,前者计算较为简单,使用较为广泛。

Caffe框架中提供了专门为cifar10数据定制的(🔖)模型,是用proto格式写(😈)的,我们的demo也基于这个模型。内容如下:

name: "CIFAR10_quick_test"input: "data"input_dim: 1input_dim: 3input_dim: 32input_dim: 32layers {name: "conv1"type: CONVOLUTIONbottom: "data"top: "conv1"blobs_lr: 1blobs_lr: 2convolution_param {num_output: 32pad: 2kernel_size: 5stride: 1}}layers {name: "pool1"type: POOLINGbottom: "conv1"top: "pool1"pooling_param {pool: MAXkernel_size: 3stride: 2}}layers {name: "relu1"type: RELUbottom: "pool1"top: "pool1"}layers {name: "conv2"type: CONVOLUTIONbottom: "pool1"top: "conv2"blobs_lr: 1blobs_lr: 2convolution_param {num_output: 32pad: 2kernel_size: 5stride: 1}}layers {name: "relu2"type: RELUbottom: "conv2"top: "conv2"}layers {name: "pool2"type: POOLINGbottom: "conv2"top: "pool2"pooling_param {pool: AVEkernel_size: 3stride: 2}}layers {name: "conv3"type: CONVOLUTIONbottom: "pool2"top: "conv3"blobs_lr: 1blobs_lr: 2convolution_param {num_output: 64pad: 2kernel_size: 5stride: 1}}layers {name: "relu3"type: RELUbottom: "conv3"top: "conv3"}layers {name: "pool3"type: POOLINGbottom: "conv3"top: "pool3"pooling_param {pool: AVEkernel_size: 3stride: 2}}layers {name: "ip1"type: INNER_PRODUCTbottom: "pool3"top: "ip1"blobs_lr: 1blobs_lr: 2inner_product_param {num_output: 64}}layers {name: "ip2"type: INNER_PRODUCTbottom: "ip1"top: "ip2"blobs_lr: 1blobs_lr: 2inner_product_param {num_output: 10}}layers {name: "prob"type: SOFTMAXbottom: "ip2"top: "prob"}

复制代码

可见,上述模型经过了3个卷积层(conv1, conv2, conv3),每个卷积层后面(🐽)都跟着下采(🌵)样层(pool1, pool2, pool3),之后有两个全连接层(ip1, ip2),最后一层prob为SOFTMAX分类层,是计算(➡)概率密度的,这里我们不需要关心。

下面三张图分别统计了CNN模型各层的参数量、数据量和计算量。

可以看出,卷积层的参数量很少,但数据量很大;全连接层(🌐)刚好相反,参数量较大,但数据量很少。

通过(🤼)计算量(🎁)统计发现conv2计算量最大,其次是conv3和conv1。全连接层的计算(💉)量相对卷积层较小,但不可(🌾)忽略。其他(🌵)层(pool1, pool2以及各级relu)由于计算量太小,本设计中没有将其实现为Open CL kernel,而是直接CPU端实现。

综上所述,我们重点实现两个算法:卷积和矩阵乘,分别对应(🚄)卷积层、全连接层的实现(😪)。

在DE1-SOC上(⛴)我利用了(🥐)友晶(🤔)提供的Open CL BSP,支持C语言开发FPGA。

卷积层计算kernel函数如下:

__attribute__((num_compute_units(4)))__kernelvoid conv(__global float * a, __global float * b, __global float * c, const int M, const int N, const int K){int gx = get_global_id(0);int gy = get_global_id(1);float tmp=0.0f;for(int x = 0; x < K; x ++){for(int y = 0; y < K; y ++){tmp += a[(gx + x) * M + (gy + y)] * b[x * K + y];}}

复制代码

全连接层计算采用(🏆)矩阵乘实现,kernel函数如下:

__attribute__((num_compute_units(4)))__kernelvoid gemm(__global float * a, __global float * b, __global float * c, const int M, const int N, const int K){int gx = get_global_id(0);int gy = get_global_id(1);int sy = get_global_size(1);int sx = get_global_size(0);int s = sx * sy;for(int x = gx; x < M; x += sx){for(int y = gy; y < N; y += sy){float tmp=0.0f;for(int z = 0; z < K; z++){tmp += a[z * M + x] * b[y * K + z];}c[y * M + x] = tmp;}}}

复制代(⛳)码(⏳)

编译(👧)kernel函数需要使用Altera SDK for OpenCL,我用的版本是14.0.0.200,申请了两个月的license。编译(📰)使用命令行aoc,得到*.aocx文件。

Open CL编译输出(♟)报告中给(🚢)出了资源占用情况(🉑):

+--------------------------------------------------------------------+; Estimated Resource Usage Summary ;+----------------------------------------+---------------------------+; Resource + Usage ;+----------------------------------------+---------------------------+; Logic utilization ; 83% ;; Dedicated logic registers ; 46% ;; Memory blocks ; 57% ;; DSP blocks ; 25% ;+----------------------------------------+---------------------------;

复制代码

可见,逻辑(✏)资源、存储器资源消耗较为明显,而DSP资(🕎)源并未用尽,说明还有优化的空间。

编译主程序需要使(🍁)用SoCEDS,我用的版本为14.0.2.274,也是命令行方式,在工程目录下执行(☝)make,结束后得到可执行文件cnn。

将这两个文件拷贝到SD卡,按照前面的博客对板子进行设置,将CNN的模型(🚳)、CIFAR10数据也拷贝到SD卡中,板子上电,mount SD卡到/mnt,执行cnn,得到输出如下(🧀):

<div class="blockcode"><blockquote>Please input the number of images(1~100):100Loading data...OK!Constructing CNN...OK!Begin calculation...Elapsed Time = 141.861 s.Real Label = 3(cat), Calc Label = 3(cat), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 0(airplane), Calc Label = 0(airplane), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 1(automobile), Calc Label = 1(automobile), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 3(cat), Calc Label = 3(cat), error count = 0Real Label = 1(automobile), Calc Label = 1(automobile), error count = 0Real Label = 0(airplane), Calc Label = 0(airplane), error count = 0Real Label = 9(truck), Calc Label = 9(truck), error count = 0Real Label = 5(dog), Calc Label = 5(dog), error count = 0Real Label = 7(horse), Calc Label = 7(horse), error count = 0Real Label = 9(truck), Calc Label = 9(truck), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 5(dog), Calc Label = 5(dog), error count = 0Real Label = 7(horse), Calc Label = 7(horse), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 7(horse), Calc Label = 7(horse), error count = 0Real Label = 0(airplane), Calc Label = 2(bird), error count = 1Real Label = 4(deer), Calc Label = 4(deer), error count = 1Real Label = 9(truck), Calc Label = 9(truck), error count = 1Real Label = 5(dog), Calc Label = 4(deer), error count = 2Real Label = 2(bird), Calc Label = 3(cat), error count = 3Real Label = 4(deer), Calc Label = 4(deer), error count = 3Real Label = 0(airplane), Calc Label = 0(airplane), error count = 3Real Label = 9(truck), Calc Label = 9(truck), error count = 3Real Label = 6(frog), Calc Label = 6(frog), error count = 3Real Label = 6(frog), Calc Label = 6(frog), error count = 3Real Label = 5(dog), Calc Label = 5(dog), error count = 3Real Label = 4(deer), Calc Label = 4(deer), error count = 3Real Label = 5(dog), Calc Label = 5(dog), error count = 3Real Label = 9(truck), Calc Label = 9(truck), error count = 3Real Label = 2(bird), Calc Label = 3(cat), error count = 4Real Label = 4(deer), Calc Label = 7(horse), error count = 5Real Label = 1(automobile), Calc Label = 9(truck), error count = 6Real Label = 9(truck), Calc Label = 9(truck), error count = 6Real Label = 5(dog), Calc Label = 5(dog), error count = 6Real Label = 4(deer), Calc Label = 4(deer), error count = 6Real Label = 6(frog), Calc Label = 6(frog), error count = 6Real Label = 5(dog), Calc Label = 5(dog), error count = 6Real Label = 6(frog), Calc Label = 6(frog), error count = 6Real Label = 0(airplane), Calc Label = 0(airplane), error count = 6Real Label = 9(truck), Calc Label = 9(truck), error count = 6Real Label = 3(cat), Calc Label = 5(dog), error count = 7Real Label = 9(truck), Calc Label = 9(truck), error count = 7Real Label = 7(horse), Calc Label = 7(horse), error count = 7Real Label = 6(frog), Calc Label = 6(frog), error count = 7Real Label = 9(truck), Calc Label = 9(truck), error count = 7Real Label = 8(ship), Calc Label = 8(ship), error count = 7Real Label = 0(airplane), Calc Label = 2(bird), error count = 8Real Label = 3(cat), Calc Label = 3(cat), error count = 8Real Label = 8(ship), Calc Label = 8(ship), error count = 8Real Label = 8(ship), Calc Label = 8(ship), error count = 8Real Label = 7(horse), Calc Label = 7(horse), error count = 8Real Label = 7(horse), Calc Label = 7(horse), error count = 8Real Label = 4(deer), Calc Label = 3(cat), error count = 9Real Label = 6(frog), Calc Label = 3(cat), error count = 10Real Label = 7(horse), Calc Label = 7(horse), error count = 10Real Label = 3(cat), Calc Label = 5(dog), error count = 11Real Label = 6(frog), Calc Label = 6(frog), error count = 11Real Label = 3(cat), Calc Label = 3(cat), error count = 11Real Label = 6(frog), Calc Label = 6(frog), error count = 11Real Label = 2(bird), Calc Label = 2(bird), error count = 11Real Label = 1(automobile), Calc Label = 1(automobile), error count = 11Real Label = 2(bird), Calc Label = 2(bird), error count = 11Real Label = 3(cat), Calc Label = 3(cat), error count = 11Real Label = 7(horse), Calc Label = 9(truck), error count = 12Real Label = 2(bird), Calc Label = 2(bird), error count = 12Real Label = 6(frog), Calc Label = 6(frog), error count = 12Real Label = 8(ship), Calc Label = 8(ship), error count = 12Real Label = 8(ship), Calc Label = 8(ship), error count = 12Real Label = 0(airplane), Calc Label = 0(airplane), error count = 12Real Label = 2(bird), Calc Label = 2(bird), error count = 12Real Label = 9(truck), Calc Label = 0(airplane), error count = 13Real Label = 3(cat), Calc Label = 3(cat), error count = 13Real Label = 3(cat), Calc Label = 2(bird), error count = 14Real Label = 8(ship), Calc Label = 8(ship), error count = 14Real Label = 8(ship), Calc Label = 8(ship), error count = 14Real Label = 1(automobile), Calc Label = 1(automobile), error count = 14Real Label = 1(automobile), Calc Label = 1(automobile), error count = 14Real Label = 7(horse), Calc Label = 7(horse), error count = 14Real Label = 2(bird), Calc Label = 2(bird), error count = 14Real Label = 5(dog), Calc Label = 7(horse), error count = 15Real Label = 2(bird), Calc Label = 2(bird), error count = 15Real Label = 7(horse), Calc Label = 7(horse), error count = 15Real Label = 8(ship), Calc Label = 8(ship), error count = 15Real Label = 9(truck), Calc Label = 9(truck), error count = 15Real Label = 0(airplane), Calc Label = 0(airplane), error count = 15Real Label = 3(cat), Calc Label = 4(deer), error count = 16Real Label = 8(ship), Calc Label = 8(ship), error count = 16Real Label = 6(frog), Calc Label = 6(frog), error count = 16Real Label = 4(deer), Calc Label = 4(deer), error count = 16Real Label = 6(frog), Calc Label = 6(frog), error count = 16Real Label = 6(frog), Calc Label = 6(frog), error count = 16Real Label = 0(airplane), Calc Label = 2(bird), error count = 17Real Label = 0(airplane), Calc Label = 0(airplane), error count = 17Real Label = 7(horse), Calc Label = 7(horse), error count = 17Classify Score = 83 %.

上面的执(👈)行流程是这样的,首先输入测试样本数目((🥈)1到100),由于DE1板子FPGA端SDRAM容量较小,难以加载全部测试数据(10000张(♑)图片),故(🦅)每次最多(🔷)装入100张图片。之后载入数据到HPS内存,然后开始构建CNN模型,构建过程中也实现了(🥉)Open CL的初始化。构建完毕,将输入图像依次通过CNN,得到一(💻)系列分类结果,与标签进行对比,统计错误分类个数(🤽),计算分类准确率。

经过测试,分类准确率达到83%,与Caffe测试结果一致。

经过以上测试,可以得到结论:

(1)(👇)使用Open CL可以很方便地移植高级语言编写的算法;

(2)CNN在移植过程中需要考虑实际硬件,定制合适的模型和数据;

(3)Cyclone 5逻辑资源较少(85K,Open CL kernel占用了83%),如果希望进一(😐)步提高(💯)计算速度,一方面可以选用高性能器件(如Stratix V、Arria 10),另一方面(👕)可以使用RTL自己搭建计算(🉐)系统。

以上图文内容均是EEWORLD论坛网友zhaoyongke原创,在此感谢。

欢迎微博@EEWORLD

如果你也写过此类原创干货请关注微信订阅(📁)号(ID:eeworldbbs,将你的(🥀)原创发至:bbs_service@eeworld.com.cn,一经入选,我们将帮你登上头条!

与更多行业内网友进行交流请登陆EEWORLD论坛。

【婷婷丁香俺也去狠狠爱的相关新闻】

猜你喜欢

💟相关问题

1.请问哪个网站可以免费在线观看动漫《婷婷丁香俺也去狠狠爱》?

优酷视频网友:http://www.ahxhhy.com/video/51936386.html

2.《婷婷丁香俺也去狠狠爱》是什么时候上映/什么时候开播的?

腾讯视频网友:上映时间为2022年,详细日期可以去百度百科查一查。

3.《婷婷丁香俺也去狠狠爱》是哪些演员主演的?

爱奇艺网友:婷婷丁香俺也去狠狠爱演员表有,导演是。

4.动漫《婷婷丁香俺也去狠狠爱》一共多少集?

电影吧网友:目前已更新到全集已完结

5.手机免费在线点播《婷婷丁香俺也去狠狠爱》有哪些网站?

手机电影网网友:美剧网、腾讯视频、电影网

6.《婷婷丁香俺也去狠狠爱》评价怎么样?

百度最佳答案:《婷婷丁香俺也去狠狠爱》口碑不错,演员阵容强大演技炸裂,并且演员的演技一直在线,全程无尿点。你也可以登录百度问答获得更多评价。

  • 婷婷丁香俺也去狠狠爱百度百科 婷婷丁香俺也去狠狠爱版原著 婷婷丁香俺也去狠狠爱什么时候播 婷婷丁香俺也去狠狠爱在线免费观看 婷婷丁香俺也去狠狠爱演员表 婷婷丁香俺也去狠狠爱大结局 婷婷丁香俺也去狠狠爱说的是什么 婷婷丁香俺也去狠狠爱图片 在线婷婷丁香俺也去狠狠爱好看吗 婷婷丁香俺也去狠狠爱剧情介绍      婷婷丁香俺也去狠狠爱角色介绍 婷婷丁香俺也去狠狠爱上映时间 
  • Copyright © 2008-2024