当前位置首页2023《高在线媚药按摩无码中文字幕》

《高在线媚药按摩无码中文字幕》

类型:恐怖 战争 剧情 马来西亚 2005 

主演:凯丽·拉塞尔 卢夫斯·塞维尔 大卫·吉亚西 罗里·金尼尔 奥托·艾森度 

导演:国建勇 买志远 孙旗 

剧情简介

在Altera SoC DE1板卡上跑完整的卷积神经网络

这次(💭)为大家详细展示一个利用卷积神经网络实现图片自动分类的例程。

神经网络的优点:自动从数据中学习(🕰)经验知识,无需复杂的模型和算法。

缺点:有监督学习,需要大量的带标签数据;参数量太少时容易过拟合,泛(⛎)化能力差,参数量太大时训练收敛很慢(有可能需要几个月到几年)。

为了克服上述缺点,人们发掘了各种计算资源,包括多核CPU、GPU、DSP、ASIC、FPGA,甚至使用模拟电(🦔)路。

使用CPU实现卷(😏)积神经网络比较方便调试,但性能太差,一般人们都选用更快的GPU实现。目前开源的(🦃)框架大多都支持GPU,如伯克利(😎)大学Caffe和Google Convnet。

微软在2015年2月宣布使用Stratix V完成了CNN加速器,处理 CIFAR10 图片速度可达每秒2300多张。

这里我们也使用(🤰)CIFAR10图片数据,在Cyclone V板子上跑一个卷积神经网络CNN demo。由于板子上计算资源太少(DSP Slice只有80多个),实现完整的网络不太现实,只能在FPGA上实现(🌶)基本计算单元,然后由HPS统(🛍)一调度。性能预期不(🍉)会太高,后面给出。

CIFAR10图片都是什么呢?先来张图!

有兴趣的朋友可以到官网下载(CIFAR10官网)。上面提到过,CNN是(🍌)有监督学习系统(📩),需要大量带label的数据(🏚),CIFAR10就是这样一个开放的数据库,提供了60000张不同类别的图片,分为10个类(如上图左侧所示),每个类别有600张图。这个数据集不算特别大,适合在嵌入式平台上实现。而更大的数据集有ImageNet-1000(ImageNet官网)(🎴),拥有120多万张高清无码大(🦑)图,我下载到硬盘,占用了近200GB空间(只能忍痛将(🔞)其他rmvb和avi删掉了)!

有朋友会问,不用这些数据行不行,我们的智能手机里面照片能不能用于CNN做训练?

答案是可以的,只是你的数据集很不“均匀”,采样不够(🎑)“完备”,训练出的模型是真实模型的“有偏估计”,而上述(🚏)两个数据集经过了种种考验,已经是学术界公认的优质数据集,一年一度的ILSVRC比赛就采用了这些数据集。

说(📳)完数据,再说模型。先来看一张经典(🔉)的CNN结构:

这是世界上第一个将CNN实(♋)用化的例子,实现了手写体字母自动识别。在这个CNN模型中,可以看到输入是一张32 x 32的二维图像,经过卷积层(Convolution)、下采样层(Subsampling,也称Pooling)、全连接层(Full Connection,也称Inner Product)后,得到一组概率密度,我们选其中概率最大的元素作为该模(🍶)型对输入图像的分类结果。所以实现CNN时,只需要实现三种基本算法:卷积、下采样、矩阵乘。除此之外,每层输出都可选择是否经(➿)过非线性变换,常用的非线性变换有ReLU和Sigmoid,前者计算较为(💺)简单,使用较为广(🛷)泛。

Caffe框架中提供了专门为cifar10数据定制的(🥦)模型,是用proto格式写(🙁)的,我们的demo也基于这个模(🏠)型。内容如下:(🧕)

name: "CIFAR10_quick_test"input: "data"input_dim: 1input_dim: 3input_dim: 32input_dim: 32layers {name: "conv1"type: CONVOLUTIONbottom: "data"top: "conv1"blobs_lr: 1blobs_lr: 2convolution_param {num_output: 32pad: 2kernel_size: 5stride: 1}}layers {name: "pool1"type: POOLINGbottom: "conv1"top: "pool1"pooling_param {pool: MAXkernel_size: 3stride: 2}}layers {name: "relu1"type: RELUbottom: "pool1"top: "pool1"}layers {name: "conv2"type: CONVOLUTIONbottom: "pool1"top: "conv2"blobs_lr: 1blobs_lr: 2convolution_param {num_output: 32pad: 2kernel_size: 5stride: 1}}layers {name: "relu2"type: RELUbottom: "conv2"top: "conv2"}layers {name: "pool2"type: POOLINGbottom: "conv2"top: "pool2"pooling_param {pool: AVEkernel_size: 3stride: 2}}layers {name: "conv3"type: CONVOLUTIONbottom: "pool2"top: "conv3"blobs_lr: 1blobs_lr: 2convolution_param {num_output: 64pad: 2kernel_size: 5stride: 1}}layers {name: "relu3"type: RELUbottom: "conv3"top: "conv3"}layers {name: "pool3"type: POOLINGbottom: "conv3"top: "pool3"pooling_param {pool: AVEkernel_size: 3stride: 2}}layers {name: "ip1"type: INNER_PRODUCTbottom: "pool3"top: "ip1"blobs_lr: 1blobs_lr: 2inner_product_param {num_output: 64}}layers {name: "ip2"type: INNER_PRODUCTbottom: "ip1"top: "ip2"blobs_lr: 1blobs_lr: 2inner_product_param {num_output: 10}}layers {name: "prob"type: SOFTMAXbottom: "ip2"top: "prob"}

复制代码

可见,上述模(🏁)型经过了3个卷积层(conv1, conv2, conv3),每个卷积层后面都跟着下采样层(pool1, pool2, pool3),之后(🧒)有两个全连接层(ip1, ip2),最(🚄)后一层prob为SOFTMAX分类层,是计算概率密度(🦔)的,这里我们不需要关心。

下面三张(🦈)图分别统计了CNN模型各层的参数(🎥)量、数据量和计(🎢)算量。

可以看出,卷积层(😑)的参数量很少,但数据量很大;全连接层刚好相反,参数量较大,但(🏄)数据量很(🏑)少。

通过计算量统计发现conv2计算量最大(🆔),其次是conv3和conv1。全连接层的计算量(⛎)相对卷积层较小,但不可忽略。其他层(pool1, pool2以及各级relu)由于计算量太小,本设计中没有将其实现为Open CL kernel,而是直接CPU端实现。

综上所述,我们重点(🕗)实现两个算(✝)法:卷积和矩阵乘,分别(💺)对应卷积层、全连接层的实现。

在DE1-SOC上我利用了友晶提供的Open CL BSP,支持(😖)C语言开发FPGA。

卷积层计算kernel函数如下:

__attribute__((num_compute_units(4)))__kernelvoid conv(__global float * a, __global float * b, __global float * c, const int M, const int N, const int K){int gx = get_global_id(0);int gy = get_global_id(1);float tmp=0.0f;for(int x = 0; x < K; x ++){for(int y = 0; y < K; y ++){tmp += a[(gx + x) * M + (gy + y)] * b[x * K + y];}}

复制代(🏈)码

全连接层计算采用矩阵乘实现,kernel函数如下:

__attribute__((num_compute_units(4)))__kernelvoid gemm(__global float * a, __global float * b, __global float * c, const int M, const int N, const int K){int gx = get_global_id(0);int gy = get_global_id(1);int sy = get_global_size(1);int sx = get_global_size(0);int s = sx * sy;for(int x = gx; x < M; x += sx){for(int y = gy; y < N; y += sy){float tmp=0.0f;for(int z = 0; z < K; z++){tmp += a[z * M + x] * b[y * K + z];}c[y * M + x] = tmp;}}}

复制代码

编译kernel函数需要使用Altera SDK for OpenCL,我用的版本是14.0.0.200,申请了两个月的license。编译使用命令行aoc,得到*.aocx文件。

Open CL编译输出报告中给出了资源占用情况:

+--------------------------------------------------------------------+; Estimated Resource Usage Summary ;+----------------------------------------+---------------------------+; Resource + Usage ;+----------------------------------------+---------------------------+; Logic utilization ; 83% ;; Dedicated logic registers ; 46% ;; Memory blocks ; 57% ;; DSP blocks ; 25% ;+----------------------------------------+---------------------------;

复制代码

可见,逻辑资源(🤺)、存储器资源消耗较为明显,而DSP资源并未用尽,说明还有优化的空间。

编译主程序需要使用SoCEDS,我(🆎)用的版本为14.0.2.274,也是命令行方式,在工程目录下执行make,结束(🍐)后得到(🚕)可执行文件cnn。

将这(🎷)两个文件拷贝到SD卡,按照前面的博客对板子进行设置,将(🍾)CNN的(🤮)模型、CIFAR10数据也(😎)拷贝到SD卡中,板子上电,mount SD卡到/mnt,执行cnn,得到输出如下:

<div class="blockcode"><blockquote>Please input the number of images(1~100):100Loading data...OK!Constructing CNN...OK!Begin calculation...Elapsed Time = 141.861 s.Real Label = 3(cat), Calc Label = 3(cat), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 0(airplane), Calc Label = 0(airplane), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 1(automobile), Calc Label = 1(automobile), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 3(cat), Calc Label = 3(cat), error count = 0Real Label = 1(automobile), Calc Label = 1(automobile), error count = 0Real Label = 0(airplane), Calc Label = 0(airplane), error count = 0Real Label = 9(truck), Calc Label = 9(truck), error count = 0Real Label = 5(dog), Calc Label = 5(dog), error count = 0Real Label = 7(horse), Calc Label = 7(horse), error count = 0Real Label = 9(truck), Calc Label = 9(truck), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 5(dog), Calc Label = 5(dog), error count = 0Real Label = 7(horse), Calc Label = 7(horse), error count = 0Real Label = 8(ship), Calc Label = 8(ship), error count = 0Real Label = 6(frog), Calc Label = 6(frog), error count = 0Real Label = 7(horse), Calc Label = 7(horse), error count = 0Real Label = 0(airplane), Calc Label = 2(bird), error count = 1Real Label = 4(deer), Calc Label = 4(deer), error count = 1Real Label = 9(truck), Calc Label = 9(truck), error count = 1Real Label = 5(dog), Calc Label = 4(deer), error count = 2Real Label = 2(bird), Calc Label = 3(cat), error count = 3Real Label = 4(deer), Calc Label = 4(deer), error count = 3Real Label = 0(airplane), Calc Label = 0(airplane), error count = 3Real Label = 9(truck), Calc Label = 9(truck), error count = 3Real Label = 6(frog), Calc Label = 6(frog), error count = 3Real Label = 6(frog), Calc Label = 6(frog), error count = 3Real Label = 5(dog), Calc Label = 5(dog), error count = 3Real Label = 4(deer), Calc Label = 4(deer), error count = 3Real Label = 5(dog), Calc Label = 5(dog), error count = 3Real Label = 9(truck), Calc Label = 9(truck), error count = 3Real Label = 2(bird), Calc Label = 3(cat), error count = 4Real Label = 4(deer), Calc Label = 7(horse), error count = 5Real Label = 1(automobile), Calc Label = 9(truck), error count = 6Real Label = 9(truck), Calc Label = 9(truck), error count = 6Real Label = 5(dog), Calc Label = 5(dog), error count = 6Real Label = 4(deer), Calc Label = 4(deer), error count = 6Real Label = 6(frog), Calc Label = 6(frog), error count = 6Real Label = 5(dog), Calc Label = 5(dog), error count = 6Real Label = 6(frog), Calc Label = 6(frog), error count = 6Real Label = 0(airplane), Calc Label = 0(airplane), error count = 6Real Label = 9(truck), Calc Label = 9(truck), error count = 6Real Label = 3(cat), Calc Label = 5(dog), error count = 7Real Label = 9(truck), Calc Label = 9(truck), error count = 7Real Label = 7(horse), Calc Label = 7(horse), error count = 7Real Label = 6(frog), Calc Label = 6(frog), error count = 7Real Label = 9(truck), Calc Label = 9(truck), error count = 7Real Label = 8(ship), Calc Label = 8(ship), error count = 7Real Label = 0(airplane), Calc Label = 2(bird), error count = 8Real Label = 3(cat), Calc Label = 3(cat), error count = 8Real Label = 8(ship), Calc Label = 8(ship), error count = 8Real Label = 8(ship), Calc Label = 8(ship), error count = 8Real Label = 7(horse), Calc Label = 7(horse), error count = 8Real Label = 7(horse), Calc Label = 7(horse), error count = 8Real Label = 4(deer), Calc Label = 3(cat), error count = 9Real Label = 6(frog), Calc Label = 3(cat), error count = 10Real Label = 7(horse), Calc Label = 7(horse), error count = 10Real Label = 3(cat), Calc Label = 5(dog), error count = 11Real Label = 6(frog), Calc Label = 6(frog), error count = 11Real Label = 3(cat), Calc Label = 3(cat), error count = 11Real Label = 6(frog), Calc Label = 6(frog), error count = 11Real Label = 2(bird), Calc Label = 2(bird), error count = 11Real Label = 1(automobile), Calc Label = 1(automobile), error count = 11Real Label = 2(bird), Calc Label = 2(bird), error count = 11Real Label = 3(cat), Calc Label = 3(cat), error count = 11Real Label = 7(horse), Calc Label = 9(truck), error count = 12Real Label = 2(bird), Calc Label = 2(bird), error count = 12Real Label = 6(frog), Calc Label = 6(frog), error count = 12Real Label = 8(ship), Calc Label = 8(ship), error count = 12Real Label = 8(ship), Calc Label = 8(ship), error count = 12Real Label = 0(airplane), Calc Label = 0(airplane), error count = 12Real Label = 2(bird), Calc Label = 2(bird), error count = 12Real Label = 9(truck), Calc Label = 0(airplane), error count = 13Real Label = 3(cat), Calc Label = 3(cat), error count = 13Real Label = 3(cat), Calc Label = 2(bird), error count = 14Real Label = 8(ship), Calc Label = 8(ship), error count = 14Real Label = 8(ship), Calc Label = 8(ship), error count = 14Real Label = 1(automobile), Calc Label = 1(automobile), error count = 14Real Label = 1(automobile), Calc Label = 1(automobile), error count = 14Real Label = 7(horse), Calc Label = 7(horse), error count = 14Real Label = 2(bird), Calc Label = 2(bird), error count = 14Real Label = 5(dog), Calc Label = 7(horse), error count = 15Real Label = 2(bird), Calc Label = 2(bird), error count = 15Real Label = 7(horse), Calc Label = 7(horse), error count = 15Real Label = 8(ship), Calc Label = 8(ship), error count = 15Real Label = 9(truck), Calc Label = 9(truck), error count = 15Real Label = 0(airplane), Calc Label = 0(airplane), error count = 15Real Label = 3(cat), Calc Label = 4(deer), error count = 16Real Label = 8(ship), Calc Label = 8(ship), error count = 16Real Label = 6(frog), Calc Label = 6(frog), error count = 16Real Label = 4(deer), Calc Label = 4(deer), error count = 16Real Label = 6(frog), Calc Label = 6(frog), error count = 16Real Label = 6(frog), Calc Label = 6(frog), error count = 16Real Label = 0(airplane), Calc Label = 2(bird), error count = 17Real Label = 0(airplane), Calc Label = 0(airplane), error count = 17Real Label = 7(horse), Calc Label = 7(horse), error count = 17Classify Score = 83 %.

上面的执行流(🔧)程是这(🐾)样的,首先输入测试样本数目(1到100),由于DE1板(⛓)子FPGA端SDRAM容量较小,难以加载全部测试数据(10000张图(⛑)片),故每次最多装入100张图片。之后载入数据到HPS内存,然后开始构建CNN模型,构建过程中也实现了Open CL的初始化。构建完毕,将输入图像依次通过CNN,得到一系列分类结(🍩)果,与标签进行对比,统计错误(♊)分类个数,计算分(👼)类准确(🙈)率。

经过(🥚)测试,分类准确率达到83%,与Caffe测试结果一(🧐)致。

经过以上测试,可以得到结论:

(1)使用Open CL可以很方便地移植高级语言编写的算法;

(2)CNN在移(➡)植过程中需要考虑实际硬件,定制合适的(💪)模型和数据;

(3)Cyclone 5逻辑资源较少(85K,Open CL kernel占用了83%),如果希望进一步提高计算速度,一方面可以选用高性能器件(如Stratix V、Arria 10),另一方面可以(👪)使用RTL自己搭建计算系统。

以上图文内容均是EEWORLD论坛网友zhaoyongke原创,在此感谢。

欢(🎁)迎微博@EEWORLD

如果你(🌴)也写过此类原创干货请关注微信订阅号(ID:eeworldbbs,将你的原创发至:bbs_service@eeworld.com.cn,一经入选(🙅),我们将帮(🍤)你登上(🚐)头条(🏖)!

与更多行业内网友进行交流请登陆EEWORLD论坛。

【高在线媚药按摩无码中文字幕的相关新闻】

猜你喜欢

💟相关问题

1.请问哪个网站可以免费在线观看动漫《高在线媚药按摩无码中文字幕》?

优酷视频网友:http://www.ahxhhy.com/video/2287107715923.html

2.《高在线媚药按摩无码中文字幕》是什么时候上映/什么时候开播的?

腾讯视频网友:上映时间为2022年,详细日期可以去百度百科查一查。

3.《高在线媚药按摩无码中文字幕》是哪些演员主演的?

爱奇艺网友:高在线媚药按摩无码中文字幕演员表有,导演是。

4.动漫《高在线媚药按摩无码中文字幕》一共多少集?

电影吧网友:目前已更新到全集已完结

5.手机免费在线点播《高在线媚药按摩无码中文字幕》有哪些网站?

手机电影网网友:美剧网、腾讯视频、电影网

6.《高在线媚药按摩无码中文字幕》评价怎么样?

百度最佳答案:《高在线媚药按摩无码中文字幕》口碑不错,演员阵容强大演技炸裂,并且演员的演技一直在线,全程无尿点。你也可以登录百度问答获得更多评价。

  • 高在线媚药按摩无码中文字幕百度百科 高在线媚药按摩无码中文字幕版原著 高在线媚药按摩无码中文字幕什么时候播 高在线媚药按摩无码中文字幕在线免费观看 高在线媚药按摩无码中文字幕演员表 高在线媚药按摩无码中文字幕大结局 高在线媚药按摩无码中文字幕说的是什么 高在线媚药按摩无码中文字幕图片 在线高在线媚药按摩无码中文字幕好看吗 高在线媚药按摩无码中文字幕剧情介绍      高在线媚药按摩无码中文字幕角色介绍 高在线媚药按摩无码中文字幕上映时间 
  • Copyright © 2008-2024